Iterative Data Removal

- Steepest descent approach
 - One well removed at each stage
 - Pick location which least increases bias, uncertainty of MILR estimates at known sample locations
- Move to next stage
 - Periodically estimate entire mesh with remaining wells
 - Compute bias, uncertainty compared to base map

Bias Map Example

Uncertainty Map Example

Cost-Accuracy Tradeoffs

- GTS balances cost of network vs.
 - Global & local bias
 - Global & local uncertainty (MSE)
 - Algorithm looks at both concentration & probability scale measures
- Results distilled in tradeoff curves

Uranium Slice 1 Bias

Uranium Slice 1 MSE

Uranium Slice 2 Bias

Uranium Slice 2 MSE

Removal Per Slice

Time Slice	% Removed	N Wells
1	28%	8 of 29
2	41%	12 of 29
3	27%	9 of 33
4	19%	6 of 32

Optimal Uranium Network

Optimizing by Addition

- Existing network may not provide adequate coverage
 - Should any wells be added?
- GTS uses misclassification probabilities
 - Relative to regulatory limit, MCL
 - Uranium limit = 30 ppb
 - Areas with high chance of misclassification are candidates for new wells

Benefits of CCDF

- CCDF = Conditional Cumulative Distribution Function
- MILR estimates unique CCDF at each mesh point
 - Depends on surrounding samples
 - Probabilities bounded by observed indicator data

Misclassification Computation

- False positives
 - Pr {True ≤ MCL | Estimate > MCL}
 - Computed using CCDF at each pixel
- False negatives
 - Pr {True > MCL | Estimate ≤ MCL}
- These probabilities are mapped using recent data

Uranium Misclassificaton Map

Summary

- GTS provides:
 - Flexible optimization
 - · Temporal, spatial, or both
 - Optimize by subtraction and/or addition
 - Choice of temporal approaches
 - Temporal variogram (less historical data)
 - Iterative thinning (longer historical record)
 - Defensible optimization
 - Highly empirical
 - Quasi-nonparametric estimation
 - Stakeholders can negotiate level of removal

Summary (cont.)

GTS provides:

- Visual emphasis
 - Variograms, time series graphs
 - Trend maps
 - Bias & uncertainty maps
 - Base maps
 - Cost-accuracy tradeoff curves
 - Optimal network plots
 - Misclassification maps

Thanks and...Go GTS!

Kirk Cameron, Ph.D.

MacStat Consulting, Ltd.

Colorado Springs, CO

(719) 532-0453

